BGnet: Background determination for arbitrary point-spread-function images with deep neural nets

Dr. Leonhard Möckl, Stanford University
Leuchs-Russell Auditorium, A.1.500, Staudtstr. 2
Location details


Abstract:

Background fluorescence, especially when it exhibits distinct spatial features, is a primary factor for reduced image quality in optical microscopy. This is particularly detrimental when analyzing single molecules for 3D localization microscopy or single-molecule tracking. In my talk, I will introduce BGnet, a deep neural network with U-net-type architecture, as a general background estimation method. BGnet is capable to rapidly determine arbitrary background shapes from images of arbitrary point-spread-functions (PSFs) with excellent accuracy. The resulting background-corrected PSF images, both for simulated and experimental data, lead to a substantial improvement in localization precision. Finally, I will demonstrate that the improved localization precision directly translates to higher quality of super-resolution reconstructions of biological structures.

 

MPL Newsletter

Bleiben Sie auf dem Laufenden mit unserem Newsletter!
Der MPL Newsletter informiert Sie über aktuelle Forschungsergebnisse und spannende Neuigkeiten aus dem Institut.

Aktuelle Ausgabe: Newsletter No 14 - Juli 2019

Hier finden Sie vorherige Ausgaben des Newsletters.

 

Max-Planck-Zentren und -Schulen