
0.1. ELECTRO-OPTICAL EFFECTS

Nonlinear Optics

Optics with χ(3) materials

0.1 Electro-optical effects

0.1.1 Tensors and index ellipsoid

We have already discussed that since D and E are linked by a tensorial relationship
D = ǫ0ǫ̂rE, where ǫ̂r is a tensor. We can rewrite this equation as

∀i ∈ (x, y, z), Di = ǫ0
∑

j

ǫ̂r,ijEj (1)

In the most general form the tensor ǫ̂r is

ǫ̂r =





ǫxx ǫxy ǫxz
ǫyx ǫyy ǫyz
ǫzx ǫzy ǫzz



 =







ǫ1 . . .
... ǫ2

ǫ3






(2)

where ǫ1, ǫ2 and ǫ3 are the susceptibility along the three eigenaxis of the tensor ǫ̂r. We
remind that we previously wrote from the tensor ǫ̂r the index ellipsoid

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 (3)

where ni =
√
ǫi. We also remind that depending on the values of the refractive indices

ni, the material can be characterized as

• isotropic material if ǫ1 = ǫ2 = ǫ3

• uniaxial material if ǫ1 = ǫ2 6= ǫ3

• biaxial material if ǫ1 6= ǫ2 6= ǫ3

0.1.2 Impermeability

In the case of electro-optical material the refractive of index can be modified when an
external field (DC or not) is applied. Actually, such a modification of the refractive index
will affect the index ellipsoid, but instead of dealing with ratio as

(

1/n2
i

)

it is actually
convenient to define the inverse of the permittivity, which is called the impermeability η̂
such that

η̂ · ǫ̂r = 1 ⇒ E =
1

ǫ0
η̂D (4)

Using the impermeability tensor, the index ellipsoid is then written as

ηij(E)x2
i = 1 (5)

In this form, applying an external electric field will lead to a small variation of the refrac-
tive index, which can easily be treated as a perturbation of the impermeability tensor η̂.
Interestingly, such effect can be advantageously used to control either the intensity or the
phase of the propagating radiation. Two cases are important:
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0.1. ELECTRO-OPTICAL EFFECTS

• Pockels effect : the variation of the refractive index is linear with the applied electric
field. It can only occur with non-centro symmetric crystal.

• Kerr effect : the variation of the refractive index is quadratic with the applied electric
field.

The perturbation that are created yield a modification of the impermeability tensor

ηij(E) = ηij(0) +
∑

k

(

∂ηij
∂Ek

)

E=0

Ek +
1

2

∑

k,ℓ

(

∂2ηij
∂Ek∂Eℓ

)

EkEℓ + . . . (6)

It is common to redefine

rijk =

(

∂ηij
∂Ek

)

E=0

and sijkℓ =
1

2

(

∂2ηij
∂Ek∂Eℓ

)

EkEℓ (7)

such that

ηij(E) = ηij(0) +
∑

k=x,y,z

rijkEk +
∑

k,ℓ=x,y,z

sijkℓEkEℓ (8)

Finally, in order to avoid the sum in the equation, it is important to use the Einstein
notation

∑

k=x,y,z

rijkEk ⇒ rijkEk

∑

k,ℓ=x,y,z

sijkℓEkEℓ ⇒ sijkℓEkEℓ

0.1.3 A bit of symmetry

Since ǫ̂r is a symmetric tensor, then η̂ is also a symmetric tensor: ηij = ηji:

ǫ̂r =





ǫ11 ǫ12 ǫ13
ǫ21 ǫ22 ǫ23
ǫ31 ǫ32 ǫ33



 =





ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33



 =





ǫ1 ǫ6 ǫ5
ǫ6 ǫ2 ǫ4
ǫ5 ǫ4 ǫ3



 (10)

This 3 × 3 tensor can then be expressed as a vector of dimension 6. This is called the
Voigt notation. Of course we can use this notation for either the susceptibility tensor or
the impermeability tensor.

ǫ̂r =

















ǫ1 = ǫ11
ǫ2 = ǫ22
ǫ3 = ǫ33
ǫ4 = ǫ23 = ǫ32
ǫ5 = ǫ13 = ǫ31
ǫ6 = ǫ12 = ǫ21

















; η =

















η1 = η11
η2 = η22
η3 = η33
η4 = η23 = η32
η5 = η13 = η31
η6 = η12 = η21

















(11)

2



0.2. THE LINEAR ELECTRO-OPTICS EFFECT

Tensor for Pockels effect

Similarly we can use the Voigt notation to reduce the [ 3 × 3 × 3 = 27 elements ] tensor
relative to the Pockels effect rijk such that the impermeability tensor becomes:

















η1
η2
η3
η4
η5
η6

















(E) =

















η1
η2
η3
η4
η5
η6

















(0)

+



















∆

(

1

n2

)

1
...
...

∆

(

1

n2

)

6



















=

















η1
η2
η3
η4
η5
η6

















(0)

+

















r11 r12 r13
r21 r22
r31
r41
r51
r61

















·





Ex

Ey

Ez





(12)
which is the very same equation as eq. (6).

Tensor for Kerr effect

As for the tensor relative to the Pockels effect, the tensor for the Kerr effects has sym-
metries than can be exploited in order to considerably reduced its dimension. Note
that without taking into account those symmetries, the total dimension of that tensor
is 3× 3× 3× 3 = 81 elements!

First of all sijkℓ = sjikℓ, but also since

(

∂ηij
∂Ek ∂Eℓ

)

≡
(

∂ηij
∂Eℓ ∂Ek

)

then sijkℓ = sijℓk. Therefore the original tensor can be expressed by a 6× 6 tensor:

















η1
η2
η3
η4
η5
η6

















(E) =

















η1
η2
η3
η4
η5
η6

















(0)

+



















s11 s12 s13 s14 s15 s16
s21 s22 . . .

s31
...

. . .

s41
s51
s61 s66



















·

















Ex

Ey

Ez

2EyEz

2ExEz

2ExEy

















(13)

Hopefully, we will be able to reduce these tensors even more...

0.2 The linear electro-optics effect

The linear electro-optics effect can only appear with non centro-symmetric crystal, which
do not posses the inversion symmetry. We can use the very same argument that we use to
prove that only non centro-symmetric crystal can exhibit a second order nonlinearity χ(2).
Let assume that we use a centro-symmetric crystal and apply a field such that it yields a
change of refractive index ∆n1 = sE where s is a proportionality constant characteristic
of the electro-optic effect. If we reverse the electric field the change in refractive index
will be ∆n2 = s(−E). Since the crystal posses the inversion symmetry property, we must
have ∆n1 = ∆n2 which occurs if and only if s = 0. Therefore centro-symmetric crystal
can only exhibit quadratic electro-optic effect. Non centro-symmetric crystal on the other
hand can also present linear electro-optic effect.
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

0.2.1 Example: KDP

KDP (KH2PO4) is a uniaxial crystal. As for other uniaxial crystal the susceptibility
tensor (and therefore the impermeability) tensor presents two distinct eigenvalues:

η̂ =















1

n2
o

0 0

0
1

n2
o

0

0 0
1

n2
e















(14)

And the index ellipsoid is described by the equation:

x2 + y2

n2
o

+
z2

n2
e

= 1 (15)

In the presence of an external electric field there is a modification of the refractive indices
according to



















∆

(

1

n2

)

1
...
...

∆

(

1

n2

)

6



















= rij ·





Ex

Ey

Ez



 (16)

where in the particular case of KDP, due to the symmetry properties of the crystal yield
the electro-optic tensor has the following form

rij =

















0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r63

















(17)

Electric field along the z-direction

Considering that the applied field isE = Ez ez, we can readily compute the impermeability
tensor η by adding eq. (14) and eq. (16) to get

η̂(E) =















1

n2
o

r63 Ez 0

r63 Ez

1

n2
o

0

0 0
1

n2
e















(18)

From this impermeability tensor we can calculate its eigenvalues and eigenvectors. As pre-
viously the eigenvectors will represents the principal axis of the crystal and the eigenvalues
the refractive indices along these axis.
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

Eigenvalues The eigenvalues are calculated by solving the equation det (η̂ − λ1) = 0.
This is simply given by

(

1

n2
e

− λ

)

[

(

1

n2
o

− λ

)2

− (r63 Ez)
2

]

=

(

1

n2
e

− λ

)(

1

n2
o

+ r63 Ez − λ

)(

1

n2
o

− r63 Ez − λ

)

= 0 (19)

It is clear that the eigenvalues of the impermeability tensor are























λ1 = 1/n2
o
+ r63Ez

λ2 = 1/n2
o
− r63Ez

λ3 = 1/n2
e

(20)

The change of refractive index can be calculated by

1

n2
u

=
1

n2
o

+ d

(

1

n2
o

)

=
1

n2
o

+ r63 Ez (21)

If we assume that r63 Ez ≪ 1/n2
o
and calculating the differentiation d

(

1/n2
)

=
(−2/n3

)

dn
we readily find the change of refractive index:

dn =
−n3

o

2
r63 Ez (22)

and therefore the new refractive indices (along u and v) are

nu = n0 −
1

2
n3
or63 Ez (23)

nv = n0 +
1

2
n3
or63 Ez (24)

Eigenvectors The eigenvector corresponding to the eigenvalues are

u





1
−1
0



 ; v





1
1
0



 ; w





0
0
1



 (25)

the z-axis is not changed but the x− (resp. y−) direction are rotated by 45o. Finally we
have the new ellisoid of indices which can be mathematically described by

(

1

n2
o

+ r63 Ez

)

u2 +

(

1

n2
o

− r63 Ez

)

v2 +
1

n2
e

z2 = 1 (26)

is plotted on Fig. 1. Note that we could write this as

u2

n2
u

+
v2

n2
v

+
z2

n2
e

= 1

In the presence of an external electric field, the uniaxial crystal of KDP is now a biaxial
crystal!
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

x

y

u

v

no

no +
1

2
n3

or63Ez

no −
1

2
n3

or63Ez

Figure 1: Index ellipsoid for KDP without any external field (black) and with an external
field applied along the z−direction.

0.2.2 Example: Li-Niobate

The lithium niobate (LiNbO3) is another important uniaxial crystal used for its electro-
optical properties. It belongs to a different group point symmetry than the KDP crystal
(C3v). Due to this symmetry group the linear electro-optic tensor has the following form:

rij =

















0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

















(27)

As previously let us assume that the external field is along the optic axis of the crystal.
The equation of the index ellipsoid are in that case:

(

1

n2
o + r13E

)

x2 +

(

1

n2
o + r13E

)

y2 +

(

1

n2
e + r33E

)

z2 = 1 (28)

By contrast with the case of KDP, the applied field does not lead to a change of orientation
of the principal axis of the crystal! However the length of the semiaxis of the ellipsoid are
modified according to:























nx = no − 1
2
n3
0r13E

ny = no − 1
2
n3
0r13E

nz = ne − 1
2
n3
er33E

(29)

Let us now consider that the external field is applied along the x−axs of the crystal. The
induced birefringence is then given by

nz − ny = (ne − no)−
1

2

(

n3
er33 − n3

or13
)

E (30)

0.2.3 General case

In general an external electric field causes a modification of the refractive indices and even
the orientation of the principal axis of the crystal. This appears as mixed term in the
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

equation of the ellipsoid of indices. In its most general formulation the equation of the
ellipsoid of indices is

(

1

n2
x

+ r1kEk

)

x2 +

(

1

n2
y

+ r2kEk

)

y2 +

(

1

n2
z

+ r3kEk

)

z2

+ 2yz r4kEk + 2xz r5kEk + 2xy r6kEk = 0 (31)

where the summation convention has to used. Namely k represents the three coordinates
x, y, z so that k = 1, 2, 3 and akbk =

∑3
k=1 akbk.

0.2.4 Applications of the linear electro-optic effect

As we saw previously the application of an external electric field can change significantly
the optical properties of the crystal. These effects can be efficiently used to modify and
control the propagating light, in particular by affecting its polarization state. It is also
possible to use those crystal to encode information on the traveling field either by phase
or amplitude modulation. We are looking here at a few possible applications of the linear
electro-optical effect.

The Pockels cell

The way to use an electro-optic crystal is illustrated in its more basic way on Fig. 2.
The main idea is to send a polarized beam onto the crystal. As we saw previously the
application of an external static field yield a change of the refractive indices and possibly
even modify the nature of the crystal1.

V

Beam P

L

Figure 2: Principle of a Pockel cell. A polarizer indicated by the plate P is placed before
the electro-optic crystal.

Induced birefringence and retardation

Let us consider a KDP crystal. The application of an external field along the z-axis of a
KDP crystal modifies the orientation of its principal axis. In particular in the plane z = 0
the axis are rotated by π/4 (see Section. 0.2.1 and Fig. 1) . Let us assume that we use
a beam polarized along the x−axis of the crystal. In the new referential (u, v) the field
decomposes along both axis:

Eu = A exp [i (ωt− kuz)] (32a)

Ev = A exp [i (ωt− kvz)] (32b)

(32c)

1An uniaxial KDP crystal can turn into a biaxial crystal under the presence of an external field.
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

and at the end of the crystal, which has a length ℓ:

Eu(ℓ) = A exp

{

i

[

ωt− ω

c

(

no −
1

2
r63n

3
oEz

)

ℓ

]}

(33a)

Ev(ℓ) = A exp

{

i

[

ωt− ω

c

(

no +
1

2
r63n

3
oEz

)

ℓ

]}

(33b)

As we see from eq. (33), as the field propagates both component acquire a different phase
leading to a net phase-difference

∆φ = φu − φv = k · ℓ ·∆n =
ω

c
n3
or63Ezℓ =

ω

c
n3
or63V (34)

where the difference of potential V = E · ℓ. This net phase difference is called the
retardation.

half-wave voltage

For a KDP crystal the retardation induced by the external electric field applied along the
z−axis is given at eq. (34)

∆φ ==
ω

c
n3
or63Ezℓ =

2π

λ
n3
or63V

which obviously depends not only on the length of the crystal ℓ but also on the strength
of the applied difference of potential V . Using a field polarized along the x−axis (Fig. 1)
of the crystal the field is described by the eq. (32), which we rewrite in a simpler form as

Eu = A cosωt (35a)

Ev = A cos (ωt−∆φ) (35b)

Depending on the value of the retardation ∆φ the output beam can have various states
of polarization. As shown on Fig. ?? there is a particular case for ∆φ = π. For this case

v

u

v

u

v

u

v

u

v

u

v

u

E

x

y

E

x

y

E

x

y

E

x

y

E

x

y

E

x

y

E

x

y

E

x

y

E

x

y

RHP

LHP

v

u

v

u

v

u

∆φ = 0

∆φ = 2π = 0∆φ = 3π/2

∆φ = 3π/4

∆φ = 5π/4 ∆φ = 7π/4

∆φ = π/2 ∆φ = π∆φ = π/4

Figure 3: States of polarisation at the output of the electro-optical crystal according to
the applied retardation ∆φ.

the field is linearly polarized (as initially) but is not along the u−axis.
In the particular case of ∆φ = π the crystal acts as an half-wave plate2. Since the

induced phase is equal to π we call this particular voltage the half-wave voltage Vπ:

Vπ =
λ

2n3
or63

(36)

2We remind that a half-wave plate placed at an angle α with respect to the optics axis rotates a linear

polarization by an angle equal to 2α.
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

In the particular case of KDP r63 = 10.6×10−12 m/V and no = 1.47 at λ = 632 nm. The
corresponding half-wave voltage is then (eq. (36)) Vπ = 9.3 kV. This is actually really not
a small tension! The speed for modulating such a tension is limited to a few kHz. Using
the expression for the half-wave voltage we can express the retardation in a general form

∆φ = π
V

Vπ

(37)

Use of the linear electro-optic effect for amplitude modulation

As shown by the eq. (33) the application of an external electric field yields a birefringence,
which causes the polarization to evolve along the crystal. We previously saw that in the
case of beam polarized linearly along the x−axis, the application of a voltage equal to Vπ

would lead to a beam linearly polarized along the y−axis. Suppose now that we place a
polarizer after the crystal. The axis of the polarizer is along the y−axis. In the presence
of the external electric field, the polarisation of the input beam has rotated and is now
aligned with the axis of the polarizer: the beam goes through without any loss. On the
other hand when the external electric field is off the linear polarisation of the input beam
remains along the x−axis and is 90o rotated with respect to the polarizer: the beam is
blocked.

In a more general way we can use a polarizer in combination with an electro-optical
crystal in order to modulated the amplitude of a beam. A typical arrangement for such
scheme is presented on Fig. 4. For this scheme the input polarization is set along the
x−axis of the crystal.

V

Beam
P

L

x

y z

u

v

u

v
slow

axis

fast

axis
quarter

waveplate

Figure 4: Typical scheme for amplitude modulation

Since the input polarisation is at 45o with respect to the principal axis of the crystal
(in the presence of an external electric field) the projection of the input field along the
principal axis of the crystal are

Eu = A cosωt (38a)

Ev = A cosωt (38b)

which are in complex notation

Eu = A (39a)

Ev = A (39b)

Therefore the incident intensity is I = |Eu|2 + |Ev|2 = 2A2. At the output of the scheme
we have then

Eu = A (40a)

Ev = Ae−i∆φtot. (40b)
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

where the total phase shift includes the electrically-induced phase shift and the phase
introduced by the quarter wave-plate:

∆φtot. = ∆φ(EO−crystal) +∆φ(quarter−WP ) = ∆φ(EO−crystal) +
π

2
(41)

At the output of the scheme the y−component of the electric field is then

Ey =
2√
2

(

e−i∆φtot. − 1
)

(42)

and therefore the intensity

Ioutput ∝ EyE
∗

y =
A2

2

(

e−i∆φtot. − 1
) (

e+i∆φtot. − 1
)

=
A2

2

[

4 sin2

(

∆φtot.

2

)]

(43)

Considering the intensity of the input beam we have

Ioutput
Iinput

= sin2

(

∆φtot.

2

)

= sin2

(

π

2

V

Vπ

)

(44)

As we can see from Fig. 5, if we work close to half of the half-wave voltage the modulation
of the intensity (eq. (44) is almost linear and therefore it is possible to modulate the
intensity (and therefore the amplitude) of the beam without any deformation of the signal.

Vπ/2

Vπ

1

0.5
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π
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)

modulation of the transmitted

beam without deformation
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external electric field
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ra
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o

Figure 5: Use of the linear electro-optical effect for amplitude modulation. [Adapted from
A. Yariv and P. Yeh, Optical Waves in Crystals - Wiley Interscience(1984)]

Use of the linear electro-optic effect for phase modulation

Let us consider now that the input beam is polarized along the u−axis of the electro-
optical crystal. In this case the component along the v−axis of the crystal is null. The
application an the external electric field does not modify the polarisation state of the
beam but induces a change of the phase following

∆φu =
−ω

c
∆nuℓ =

ωn3
or63
2c

Ezℓ (45)

If the bias field is sinusoidal (Ez = Em sinωmt), then an incident field assumed to be a
plane wave (i.e. Ein = A cosωt), will propagate through the crystal acquiring a sinusoidal
phase. At the output plane the electric field associated with the light beam will be

Eout = A cos

[

ωt− ω

c

(

no −
n3
o

2
r63Em sinωmt

)

ℓ

]

(46)
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0.2. THE LINEAR ELECTRO-OPTICS EFFECT

And if we drop the constant factor we have the expression of the output field:

Eout = A cos (ωt+ δ sinωmt) (47)

where δ is referred in literature as the phase modulation index and its expression is given
by the following relation:

δ =
ωn3

or63Emℓ

2λ
=

πn3
or63Emℓ

λ
(48)

The light beam then experiences phase modulation because of its propagation inside the
crystal in such a configuration. The depth of the phase modulation is represented by the
phase modulation index δ. A scheme of an electro-optic phase modulator is shown in
Fig. 6.

V

Beam

L

z

u

v

P

carrier wave phase-modulated wave

output beam

Figure 6: typical setup for phase-modulation of a optical beam
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.1. ELECTRO-OPTIC TENSOR DEPENDING OF SYMMETRY

.1 Electro-optic tensor depending of symmetry

There exists 32 different classes of crystal. For each class the susceptibility tensor has
different vanishing coefficients [Boyd].

.1.1 Triclinic symmetry

Class 1
















r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63

















.1.2 Monoclinic symmetry

class 2

axis ‖ y

















0 r12 0
0 r22 0
0 r32 0
r41 0 r43
0 r52 0
r61 0 r63

















axis ‖ z

















0 0 r13
0 0 r23
0 0 r33
r41 r42 0
r51 r52 0
0 0 r63

















class m

m ⊥ y

















r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0
r51 0 r53
0 r62 0

















m ⊥ z

















r11 r12 0
r21 r22 0
r31 r32 0
0 0 r43
0 0 r53
r61 r62 0

















.1.3 Orthorhombic symmetry

222
















0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63

















2mm
















0 0 r13
0 0 r13
0 0 r13
r41 r51 0
r51 −r41 0
0 0 0
















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.1. ELECTRO-OPTIC TENSOR DEPENDING OF SYMMETRY

.1.4 Tetragonal symmetry

class 4 and 4̄

class 4

















0 0 r13
0 0 r13
0 0 r13
r41 r51 0
r51 −r41 0
0 0 0

















class 4̄

















0 0 r13
0 0 −r13
0 0 0
r41 −r51 0
r51 r41 0
0 0 r63

















class 422 and 4mm

class 422

















0 0 0
0 0 0
0 0 0
r41 0 0
0 −r41 0
0 0 0

















class 4mm

















0 0 r13
0 0 r13
0 0 r33
0 r42 0
r51 0 0
0 0 0

















class 4̄2m
















0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r63

















crystal
rij

×10−22m.V−1

KDP
r41 = 8.77
r63 = 10.3

KD*P
r41 = 8.8
r63 = 26.8

ADP
r41 = 23.76
r63 = 8.56

AD*P
r41 = 40
r63 = 10

.1.5 Cubic symmetry

class 4̄3m
















0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41

















class 432 =⇒ actually all coefficients vanish for crystal with this symmetry.
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.1. ELECTRO-OPTIC TENSOR DEPENDING OF SYMMETRY

.1.6 Trigonal symmetry

class 3 and 32

class 3

















r11 −r22 r13
−r11 r22 r13
0 0 r33
r41 r51 0
r51 −r41 0
−r22 −r11 0

















class 32

















r11 0 0
−r11 0 0
0 0 0
r41 0 0
0 −r41 0
0 −r11 0

















class 3m

m ⊥ x

















0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

















m ⊥ y

















r11 0 r13
−r11 0 r13
0 0 r33
0 r51 0
r51 0 0
0 −r11 0

















crystal
rij

×10−22m.V−1

LiNbO3

r13 = 9.6
r22 = 6.8
r33 = 30.9
r51 = 31.6

.1.7 Hexagonal symmetry

class 6, 6mm, 622 and 6̄

class 6

















0 0 r13
0 0 r13
0 0 r33
r41 r51 0
r51 −r41 0
0 0 0

















class 6mm

















0 0 r13
0 0 r13
0 0 r33
0 r51 0
r51 0 0
0 0 0

















class 622

















0 0 0
0 0 0
0 0 0
r41 0 0
r51 −r41 0
0 0 0

















class 6̄

















r11 −r22 0
−r11 r22 0
0 0 0
0 0 0
0 0 0

−r22 −r11 0

















class 6̄m2

m ⊥ x

















0 −r22 0
0 r22 0
0 0 0
0 0 0
0 0 0

−r22 0 0

















m ⊥ y

















r11 0 0
−r11 0 0
0 0 0
0 0 0
0 0 0
0 −r11 0
















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