In the past years we developed high pressure melt-filling techniques to incorporate nanowires made of metals [1-3] (Fig. 1) or high-index glasses [4-5] into photonic crystal fibers (PCF). These unique hybrid structures enable the investigation of linear and non-linear light-matter interactions in the areas of plasmonics, nonlinear optics, THz waveguiding and supercontinuum generation [5]. Possible projects include design of linear Paul traps for ions and charged particles in hollow core PCF, advanced nano-tips for scanning near-field optical microscopes, and nanoelectrodes for electro-optic modulation and field measurement. The nanowire team is looking forward to your application.


  1. H. W. Lee, M. A. Schmidt and P. St.J. Russell, Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber, Opt. Lett. 37, 2946 (2012).
  2. P. Uebel, M. A. Schmidt, M. Scharrer and P. St.J. Russell, An azimuthally polarizing photonic crystal fiber with a central gold nanowire, New J. Phys. 13, 063016 (2011).
  3. P. Uebel, M. A. Schmidt, H. W. Lee and P. St.J. Russell, Polarisation-resolved near-field mapping of a coupled gold nanowire array, accepted for: Opt. Express (2012).
  4. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek and P. St.J. Russell, Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers, Opt. Lett. 36, 2432 (2011).
  5. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek and P. St.J. Russell, Supercontinuum generation in chalcogenide-silica step-index fibers, Opt. Express 19, 21003 (2011).

Figure: (a) Sketch of a filled PCF forming a gold nanowire array. (b) Scanning electron micrograph of the cross section showing the nanowires (light grey) in the silica host material (dark grey). (c) Intensity pattern of a dielectric-plasmonic supermode guided in the core and on the first ring of nanowires [2].


Patrick Uebel (