Photonic crystal fibre development

A vital part of the Division's activities involves the fabrication and development of novel glass fibre microstructures – the optical fibres of the future. We aim to produce fibres that not only out-perform the current state-of-the-art, but also allow other researchers to use optical fibres for types of experiments that were unimaginable yesterday. A few examples include fibres that guide light in air, with minimal overlap with the glass microstructure, to achieve lower losses than possible today, fibres that can be used for generating ultraviolet light when pumped with infrared light, and fibres for trapping and guiding biological particles along the fibre. As a PhD student you would be involved in all aspects of the fabrication process: drawing glass capillaries to precise dimensions, stacking them in a class 100 cleanroom, and drawing them down in one of our fibre pulling towers first to a rigid microstructured cane and then to fibre. Once made, the fibres are characterized using a whole range of sophisticated techniques: optical and scanning-electron micrography, measurements of loss spectra and dispersion, and optical time-domain reflectometry.


  1. L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. St.J. Russell and P. W. H. Pinkse, High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging, Opt. Lett. 41, 497-500 (2016).
  2. G. K. L. Wong, X. M. Xi, M. H. Frosz and P. St.J. Russell, Enhanced optical activity and circular dichroism in twisted photonic crystal fiber, Opt. Lett. 40, 4639-4642 (2015).
  3. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers and P. St.J. Russell, Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas filled hollow-core photonic crystal fiber, Phys. Rev. A 92, 033821 (2015).
  4. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers and P. St.J. Russell, Compressing µJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages, Opt. Lett. 40 (7), 1238-1241 (2015).
  5. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers and P. St. J. Russell, Nature Photonics 9, AOP: 19 January 2015.
  6. A. Stefani, M. H. Frosz, T. G. Euser, G. K. L. Wong and P. St.J. Russell, Real-time Doppler-assisted tomography of microstructured fibers by side-scattering, Opt. Express 22 (21), 25570-25579 (2014).
  7. X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser and P. St.J. Russell, Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber, Optica 1 (3), 165-169 (2014).
  8. F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt and P. St.J. Russell, Damage-free single-mode transmission of deep-UV light in hollow-core PCF, Opt. Express 22 (13), 15388-15396 (2014).
  9. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler and P. St.J. Russell, Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss, Optics Letters 38 (13), 2215-2217 (2013),
  10. P. Ghenuche, S. Rammler, N.Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. St.J. Russell and H. Rigneault, Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy, Opt. Lett. 37 (21), 4371-4373 (2012).
  11. P. St.J. Russell, Photonic crystal fibers, Science 299, 358-362 (2003).

Figure: nanobore fibre [1] (top, left), low-loss hollow-core photonic bandgap fibre [2] (top, middle), highly nonlinear fibre from SF6 glass (top, right), hollow-core Kagome fibre illuminated with white light from below (bottom, left), double-web fibre [3] (bottom, middle), and a multi-material soft glass hollow-core fibre [4] (bottom, right).


Dr. Michael Frosz (