optics logo

606.Wilhelm und Else Heraeus-Seminar on Nanophotonics and Complex Spatial Modes of Light

Please click here to visit the full seminar webpage.

Download the scientific programme here.

Venue:
Physikzentrum Bad Honnef
(directions)

Dates:
Seminar:
January 24th - January 29th 2016.
Scientific programme from 25th - 28th.

Registration and abstract submission:
September 11th - November 9th 2015.

Organizers:
Peter Banzer and Gerd Leuchs

Contact:
Max Planck Institute
for the Science of Light
Günther-Scharowsky-Str.1/Building 24
D-91058 Erlangen
Tel.: +49(0)9131-6877-101
Fax: +49(0)9131-6877-109
email: peter.banzer@mpl.mpg.de
web:  http://indico.mpl.mpg.de/event/1/

 

Seminar contents and program:

Scientific background

The research area of nanooptics and nanophotonics has developed rapidly within the last decade. The advent of modern nanofabrication technologies boosted the high quality production of complex nanoscopic structures. Depending on their geometry, size, material, environment and the impinging light field, such nanostructures can exhibit intriguing optical properties. When interacting with light, they allow for shaping and manipulating the scattered light field (highly directional scattering, optical routing, zero-backscattering, color-filtering etc.) (Seo et al., Nano Lett. 2011; Person et al., Nano Lett. 2013; Rybin et al., PRB 2013), they can be capable of distinguishing the handedness of the impinging light (chirality) (Pendry, Science 2004) or enable highly sensitive detection of molecules or biological specimens due to local field enhancements created in their proximity (Anker et al., Nat. Mat. 2008). Not less interesting are their collective properties when combined to effective media (negative refractive index, magnetic response, cloaking etc.). Also the inverse approach can be chosen for light-matter interaction at nano- or microscale. Instead of shaping the nanostructure or nanoscopic antenna, also the impinging light field can be tailored or structured, granting access to otherwise unconceivable possibilities and applications (Neugebauer et al., Nano Lett. 2014).

In this context, light exhibits a polarization degree of freedom, which is of paramount importance for many applications in optics, biology and other scientific disciplines. The polarization defines the plane of oscillation of the electric field vector, which can vary in space and time. From a general point of view, the spatial distribution of intensity, phase or polarization of a light beam or electromagnetic field can be manipulated and structured just being limited by Maxwell’s equations. In contrast to plane waves or a paraxial fundamental Gaussian mode, which show a homogeneous distribution of the polarization in their transverse plane, so-called vectorial or scalar spatial modes may exhibit a non-homogeneous spatial distribution of their polarization and phase. Prominent examples for these two cases are cylindrical vector-beams (CVB) (Zhan, Adv. Opt. Photon. 2009), e.g. radially or azimuthally polarized modes, or scalar Laguerre-Gaussian (LG) beams exhibiting phase singularities or non-planar phase fronts (Nye et al., Proc. Roy. Soc. A 1974; Allen et al., PRA 1992; Allen et al. Progress in Optics 1999; Berry et al., Proc. Roy. Soc. A 2000; Dennis et al., Progress in Optics 2009), respectively. These unconventional polarization or phase distributions have striking consequences with respect to the properties of such beams or their capabilities. On the one hand, a radially polarized CVB, for instance, can be focused more tightly than other light beams (Quabis et al., Opt. Comm. 2000; Dorn et al., PRL 2003).  On the other hand, an LG mode possesses intrinsic (orbital) angular momentum, which can be utilized to transfer mechanical torque to microscopic objects (Molloy et al., Contemp. Phys. 2002). Of course both, complex spatial phase and polarization distributions can also be simultaneously imprinted on a propagating light beam giving access to extraordinary phenomena (Freund, Opt. Comm. 2005; Orlov et al., PRA 2014). Different techniques for generating both scalar and vectorial spatial modes have been introduced and discussed in literature. Amongst many other procedures, also specific nanostructure ensembles have been proven to act as mode convertors to generate tailored spatial modes (plasmonic or liquid-crystal-based q-plates) (Marrucci et al., PRL 2006; Zilio, Opt. Lett. 2012; Cardano et al., Opt. Exp. 2013; Karimi et al., Light 2014).

Spatial modes find applications in various fields of optics. Especially when light beams are tightly focused or strongly confined by any means, the electric field distribution or polarization can change drastically and varies spatially on the nanoscale (Youngworth et al., Opt. Exp. 2000; Quabis, Appl. Phys. B 2001; Dorn et al., J. Mod. Opt. 2003). By tailoring the excitation field and, thereby, creating almost arbitrary polarization patterns, the investigated nanoscopic systems, such as individual plasmonic or dielectric nanostructures, waveguides etc. can be excited selectively and more efficiently and studied in detail (Novotny et al., Principles of Nanooptics 2006; Mojarad et al., Opt. Exp. 2008; Züchner et al., Journal of Microscopy 2008; Volpe et al., Nano Lett. 2009; Banzer et al., Opt. Exp. 2010; J. Sancho-Parramon et al., ACS Nano 2012; Yanai et al., ACS Nano 2014). Different versatile techniques have been recently proposed to measure such complex fields with nanometer resolution (Bauer et al. Nat. Photon. 2014; Kuipers, Nat. Photon. 2014; le Feber et al., Nat. Photon. 2014). In addition, also nanoscale light sources, e.g. quantum dots or nitrogen-vacancy centers have been studied and implemented (Kumar et al., Nano Lett. 2014). By tailoring the spatial polarization or phase degrees of freedom, also the resolution of modern microscopy and imaging techniques can be enhanced (Hell et al., Opt. Lett. 1994; Lerman et al., Opt. Exp. 2009; Rodriguez-Herrera et al., PRL 2010; Mudry et al., PRL 2010). It is also worth noting that tightly focused light beam with tailored poalrization states are an excellent playgound for exploring novel and intriguing phenomena at the nanoscale (see for instance Bauer et al., Science 2015).

The potential of the inhomogeneous structure of a light beam has also been recognized in the field of quantum optics and quantum communication (Lassen et al. PRL 2009; Holleczek et al., Opt. Express 2011; Gabriel et al., PRL 2011). Here, the spatial degree of freedom in the polarization, intensity or phase distribution offers additional channels for transmitting or encoding information. Shaping the polarization both temporally and spatially can also enhance the interaction between single photons and quantum systems (Sondermann et al., Appl. Phys. B 2009; Maiwald et al., Nat. Phys. 2009; van Enk et al., PRA 2001).

In summary, the spatial structure of the light field gives rise to intriguing phenomena, properties and possibilities. One promising field of application is nanooptics and nanophotonics where polarization tailored and structured light fields or spatial modes pave the way for the investigation of individual nanoscopic systems, for high-resolution imaging, sensing or for studying fundamental quantum effects

Aims

With this seminar, we plan to bring together students with leading international experts from different optics communities, covering the topical range from technical and classical optics to the field of quantum optics and quantum communication. This seminar will specifically highlight the research areas of nanooptics and nanophotonics as well as the concept of spatial modes of light. Furthermore, it will emphasize the significance, importance and versatile applicability of scalar and vectorial spatial modes. The seminar will provide an intuitive introduction for newcomers to the above-mentioned research areas, turning it into an excellent platform for PhD students and young post-docs. In addition, it will foster the discussion between leading scientists and young researchers from different communities, thus strengthening existing and initializing new collaborations.

List of invited speakers

  • Mario Agio, National Institute of Optics, Sesto Fiorentino, Italy
  • Andrea Aiello, Max Planck Institute for the Science of Light, Erlangen, Germany
  • Miguel A. Alonso, University of Rochester, Rochester, USA
  • Ulrik L. Anderson, Technical University of Denmark, Lyngby, Denmark
  • Sir Michael Berry, University of Bristol, Bristol, UK
  • Konstantin Bliokh, Center for Emergent Matter Science, RIKEN, Wako-shi, Japan
  • Thomas G. Brown, University of Rochester, Rochester, USA
  • Israel De Leon, Monterrey Institute of Technology and Higher Education, Monterrey, Mexico
  • Mark Dennis, University of Bristol, Bristol, UK
  • Ksenia Dolgaleva, University of Ottawa, Ottawa, Canada
  • Ebrahim Karimi, University of Ottawa, Ottawa, Canada
  • Yuri S. Kivshar, The Australian National University, Canberra, Australia
  • Kobus Kuipers, AMOLF, Amsterdam, The Netherlands
  • Lorenzo Marrucci, Università di Napoli "Federico II", Naples, Italy
  • Alfred J. Meixner, Eberhard-Karls-University Tübingen, Tübingen, Germany
  • Lukas Novotny, ETH, Zurich, Switzerland
  • Miles Padgett, University of Glasgow, Glasgow, UK
  • Romain Quidant, ICFO, Barcelona, Spain
  • Monika Ritsch-Marte, Medical University of Innsbruck, Innsbruck, Austria
  • Filippo Romanato, University of Padova, Padova, Italy and University of Trieste, Trieste, Italy
  • Anne Sentenac, Institut Fresnel, Marseille, France

Literature

  • L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
  • L. Allen, M. J. Padgett, M. Babiker, Progress in Optics 39, 291-372 (1999).
  • J.N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. and Van Duyne, Nat. Mat. 7, 442 (2008).
  • P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, Optics Express 18(10), 10905–10923 (2010).
  • T. Bauer, S. Orlov, U. Peschel, P. Banzer and G. Leuchs, Nature Photonics 8, 23 - 27 (2014)
  • M.V. Berry and M. R. Dennis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456, 2059-2079 (2000).
  • F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, E. Santamato, Optics Express, 21(7):8815–8820 (2013).
  • M.R. Dennis, K. O’Holleran, M. J. Padgett, Progress in Optics, 53:293 (2009).
  • R. Dorn, S. Quabis and G. Leuchs, Phys. Rev. Lett., 91 (23), 233901 (2003).
  • R. Dorn, S. Quabis, and G. Leuchs, Journal of Modern Optics 50(12), 1917–1926 (2003).
  • I. Freund, Optics Communications, 249(1):7–22 (2005).
  • C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, Phys. Rev. Lett. 106, 060502 (2011).
  • S.W. Hell and J. Wichmann, Opt. Lett. 19, 780–782 (1994).
  • A. Holleczek, A. Aiello, C. Gabriel, C. Marquardt, and G. Leuchs, Optics Express 19(, 9714–9736 (2011).
  • E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, R. W Boyd, Light: Science & Applications3 (2014).
  • L. Kuipers, Nat. Photon. 8, 9-10 (2014).
  • S. Kumar, N. I. Kristiansen, A. Huck, U. L. Andersen, Nano Lett. 14, 663–669 (2014).
  • M. Lassen, G. Leuchs, and U. L. Andersen, Phys. Rev. Lett. 102, 163602 (2009).
  • B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, Nat. Photon. 8, 43–46 (2014).
  • G. Lerman, and U. Levy, Opt. Express 17, 23234-23246 (2009).
  • M.A. Lieb, J. M. Zavislan, and L. Novotny, Journal of the Optical Society of America B 21(6), 1210–1215 (2004).
  • R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, D. J. Wineland, Nat. Phys. 5, 551 - 554 (2009).
  • L. Marrucci, C. Manzo, D. Paparo, Physical Review Letters, 96(16):163905 (2006).
  • N.M. Mojarad and M. Agio, Optics Express 17, 117– 122 (2008).
  • J.E. Molloy, M. J. Padgett, Contemporary Physics 43, 241-258 (2002).
  • E. Mudry, E. Le Moal, P. Ferrand, P.C. Chaumet and A. Sentenac, Phys. Rev. Lett. 105, 203903 (2010).
  • T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd and G. Leuchs, Science 347, 964-966 (2015)
  • M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, Nano Lett 14, 2546–2551 (2014).
  • L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  • J.F. Nye and M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 336(1605):165–190, 1974.
  • S. Orlov and P. Banzer, Phys. Rev. A 90, 023832 (2014).
  • J.B, Pendry, Science 306, 1353−1355 (2004).
  • S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, Nano Letters 13, 1806-1809 (2013)
  • S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Optics Communications 179 (1-6), 1–7 (2000).
  • S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Applied Physics B 72(1), 109–113 (2001).
  • O. Rodrıguez-Herrera, D. Lara, K. Bliokh, E. Ostrovskaya, C. Dainty, Phys. Rev. Lett.104, 253601 (2010).
  • M.V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Y. S. Kivshar, M. F. Limonov, Phys. Rev. B 88, 205106-8 (2013).
  • J. Sancho-Parramon and S. Bosch, ACS Nano 6, 8415– 8423 (2012).
  • K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, Nano Lett. 11,1851–1856 (2011).
  • M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, G. Leuchs, Applied Physics B, 84, 489-492 (2007).
  • S.J. van Enk and H. J. Kimble, Physical Review A 63, 023809 (2001).
  • G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, R. Quidant, Nano Lett. 9, 3608–3611 (2009).
  • A. Yanai, M. Grajower, G.M. Lerman, M. Hentschel, H. Giessen, and U. Levy, ACS Nano 8, 4969–4974 (2014).
  • K. Youngworth and T. Brown, Optics Express 7, 77–87 (2000).
  • Q. Zhan, Adv. Opt. Photon. 1, 1-57 (2009).
  • P. Zilio, E. Mari, G. Parisi, F. Tamburini, F. Romanato, Opt. Lett. 37, 3234 (2012)
  • T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, Journal of Microscopy 229, 337–343 (2008).

Nach oben